
Manipulating Attributes of Natural Scenes via Hallucination

LEVENT KARACAN, Hacettepe University and Iskenderun Technical University, Turkey
ZEYNEP AKATA, University of Tübingen, Germany
AYKUT ERDEM, Hacettepe University, Turkey
ERKUT ERDEM, Hacettepe University, Turkey

Fig. 1. Given a natural image, our approach can hallucinate different versions of the same scene in a wide range of conditions, e.g.night, sunset, winter, spring,
rain, fog or even a combination of those. First, we utilize a generator network to imagine the scene with respect to its semantic layout and the desired set of
attributes. Then, we directly transfer the scene characteristics from the hallucinated output to the input image, without the need for a reference style image.

In this study, we explore building a two-stage framework for enabling users
to directly manipulate high-level attributes of a natural scene. The key to our
approach is a deep generative network which can hallucinate images of a
scene as if they were taken at a different season (e.g. during winter), weather
condition (e.g. in a cloudy day) or time of the day (e.g. at sunset). Once the
scene is hallucinated with the given attributes, the corresponding look is then
transferred to the input image while preserving the semantic details intact,
giving a photo-realistic manipulation result. As the proposed framework
hallucinates what the scene will look like, it does not require any reference
style image as commonly utilized in most of the appearance or style transfer
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approaches. Moreover, it allows to simultaneously manipulate a given scene
according to a diverse set of transient attributes within a single model,
eliminating the need of training multiple networks per each translation task.
Our comprehensive set of qualitative and quantitative results demonstrate
the effectiveness of our approach against the competing methods.
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1 INTRODUCTION
“The trees, being partly covered with snow, were out-
lined indistinctly against the grayish background formed
by a cloudy sky, barely whitened by the moon.”

– Honore de Balzac (Sarrasine, 1831)
The visual world we live in constantly changes its appearance de-
pending on time and seasons. For example, at sunset, the sun gets
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close to the horizon gives the sky a pleasant red tint, with the advent
of warm summer, the green tones on the grass leave its place in
bright yellowish tones and autumn brings a variety of shades of
brown and yellow to the trees. Such visual changes in the nature
continues in various forms at almost any moment with the effect of
time, weather and season. Such high-level changes are referred to as
transient scene attributes – e.g. cloudy, foggy, night, sunset, winter,
summer, to name a few [Laffont et al. 2014].
Recognizing transient attributes of an outdoor image and mod-

ifying its content to reflect any changes in these properties were
studied in the past, however, current approaches have many con-
straints which limit their usability and effectiveness in attribute
manipulation. In this paper, we present a framework that can hallu-
cinate different versions of a natural scene given its semantic layout
and its desired real valued transient attributes. Our model can gen-
erate many possible output images from scratch such as the ones in
Fig. 1, which is made possible by learning from data the semantic
meaning of each transient attribute and the corresponding local and
global transformations.
Image generation is quite a challenging task since it needs to

have realistic looking outputs. Visual attribute manipulation can be
considered a bit harder as it aims at photorealism as well as results
that are semantically consistent with the input image. For example,
for predicting the look of a scene at sunset, visual appearances of
the sky and the ground undergo changes differently, the sky gets
different shades of red while the dominant color of the ground
becomes much darker and texture details get lost. Unlike recent
image synthesis methods [Chen and Koltun 2017; Isola et al. 2017;
Qi et al. 2018; Wang et al. 2018], which explore producing realistic-
looking images from semantic layouts, automatically manipulating
visual attributes requires modifying the appearance of an input
image while preserving object-specific semantic details intact. Some
recent style transfer methods achieve this goal to a certain extent
but they require a reference style image [Li et al. 2018; Luan et al.
2017].
A simple solution to obtain an automatic style transfer method

is to retrieve reference style images with desired attributes from a
well-prepared dataset with a rich set of attributes. However, this
approach raises new issues that need to be solved such as retrieving
images according to desired attributes and semantic layout in an
effective way. To overcome these obstacles, we propose to combine
neural image synthesis and style transfer approaches to perform
visual attribute manipulation. For this purpose, we first devise a
conditional image synthesis model that is capable of hallucinating
desired attributes on synthetically generated scenes with semantic
content similar to the input image and then we resort to a photo
style transfer method to transfer the visual look of the hallucinated
image to the original input image to produce a resulting image with
the desired attributes.

A rich variety of generative models including Generative Adver-
sarial Networks (GANs) [Goodfellow et al. 2014; Radford et al. 2016;
Vondrick et al. 2016], Variational Autoencoders (VAEs) [Gregor et al.
2015; Kingma and Welling 2014], and autoregressive models [Mansi-
mov et al. 2016; Oord et al. 2016] have been developed to synthesize
visually plausible images. Images of higher resolutions, e.g. 256×256,
512×512 or 1024×1024, have also been rendered under improved

versions of these frameworks [Berthelot et al. 2017; Chen and Koltun
2017; Gulrajani et al. 2016; Karras et al. 2018, 2019; Reed et al. 2016a,b;
Shang et al. 2017; Zhu et al. 2017a]. However, generating diverse,
photorealistic and well-controlled images of complex scenes has
not yet been fully solved. For image synthesis, we propose a new
conditional GAN based approach to generate a target image which
has the same semantic layout with the input image but reflects the
desired transient attributes. As shown in Fig. 1, our approach allows
users to manipulate the look of an outdoor scene with respect to a
set of transient attributes, owing to a learned manifold of natural
images.
To build the aforementioned model, we argue the necessity of

better control over the generator network in GAN. We address this
issue by conditioning ample concrete information of scene contents
to the default GAN framework, deriving our proposed attribute and
semantic layout conditioned GANmodel. Spatial layout information
tells the network where to draw, resulting in clearly-defined object
boundaries and transient scene attributes serve to edit visual prop-
erties of a given scene so that we can hallucinate desired attributes
for input image in semantically similar generated image.
However, naively importing the side information is insufficient.

For one, when training the discriminator to distinguish mismatched
image-condition pairs, if the condition is randomly sampled, it can
easily be too off in describing the image to provide meaningful
error derivatives. To address this issue, we propose to selectively
sample mismatched layouts for a given real image, inspired by the
practice of hard negative mining [Wang and Gupta 2015]. For an-
other, given the challenging nature of the scene generation problem,
adversarial objective alone can struggle to discover a satisfying out-
put distribution. Existing works in synthesizing complex images
apply the technique of “feature matching”, or perceptual loss [Chen
and Koltun 2017; Dosovitskiy and Brox 2016]. Here, we also adopt
perceptual loss to stabilize and improve adversarial training for
more photographic generation but contrasting prior works, our
approach employs the layout-invariant features pretrained on seg-
mentation task to ensure consistent layouts between synthesized
images and reference images. For photo style transfer, we use a
recent deep learning based approach [Li et al. 2018] which transfers
visual appearance between same semantic objects in real photos
using semantic layout maps.

Our contributions are summarized as follows:

• We propose a new two-stage visual attribute manipulation
framework for changing high-level attributes of a given out-
door image.
• We develop a conditional GAN variant for generating nat-
ural scenes faithful to given semantic layouts and transient
attributes.
• We build up an outdoor scene dataset annotated with layout
and transient attribute labels by combining and annotating
images from Transient Attributes [Laffont et al. 2014] and
ADE20K [Zhou et al. 2017].

Our code and models are publicly available at the project website1.

1https://hucvl.github.io/attribute_hallucination
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2 RELATED WORK

2.1 Image Synthesis
In the past few years, much progress has been made towards realis-
tic image synthesis; in particularly, different flavors and improved
versions of Generative Adversarial Networks (GANs) [Goodfellow
et al. 2014] have achieved impressive results along this direction.
Radford et al. [2016] were the first to propose a architecture that can
be trained on large scale datasets, which sparked a wave of studies
aimed at improving this line of work [Arjovsky et al. 2017; Mao
et al. 2016; Salimans et al. 2016]. Larsen et al. [2016] integrates ad-
versarial discriminator to VAE framework in an attempt to prevent
mode collapsing. Its extension [Shang et al. 2017] further tackles
this issue while improving generation quality and resolution. More
recently, Karras et al. [2018] have suggested to use a cascaded set
of generators to increase both the photorealism and the resolution
of generated images. In the subsequent work, Karras et al. [2019]
have achieved further improvement in realism and diversity of the
generated synthetic images by adopting ideas from style transfer
literature [Huang and Belongie 2017].

Conditional GANs (CGANs) [Mirza and Osindero 2014] that lever-
ages side information have been widely adopted to generate images
under predefined constraints. For example, the recently proposed
BigGAN [Brock et al. 2019] generates high quality, high resolu-
tion images conditioned on visual classes in ImageNet. Reed et al.
[2016a,b] generate images using natural language descriptions; An-
tipov et al. [2017] follow similar pipelines to edit a given facial
appearance based on age. Pix2pix [Isola et al. 2017] undertakes a dif-
ferent approach to conditional generation that it directly translates
one type of image information to another type through an encoder-
decoder architecture coupled with adversarial loss; its extension
Cycle-GAN [Zhu et al. 2017a] conducts similar translation under
the assumption that well-aligned image pairs are not available. The
design of our image synthesis model resembles CGANs, as opposed
to Pix2pix, since those so-called image-to-image translation models
are limited in terms of output diversity.
In the domain of scene generation, the aforementioned Pix2pix

[Isola et al. 2017] and Cycle-GAN [Zhu et al. 2017a] both manage
to translate realistic scene images from semantic layouts. However,
these models are deterministic, in other words, they can only map
one input image to one output image in different domains. Recently,
some researchers have proposed multimodal (e.g. BicycleGAN [Zhu
et al. 2017b]) or multi-domain (e.g. StarGAN [Choi et al. 2018], MU-
NIT [Huang et al. 2018]) image-to-image translation models. Both
of these approaches have the ability to translate a given input image
to multiple possible output images with the use of a single net-
work. However, in BicycleGAN, the users have no control over the
generation process other than deciding upon the source and target
domains. StarGAN and MUNIT can perform many-to-many transla-
tions but these the translations are always carried out between two
different modalities. Although these works improve the diversity to
a certain degree, they are still limited in the sense that they do not
allow to fully control the latent scene characteristics. For instance,
these methods can not generate an image with a little bit of sunset
and partly cloudy skies from an image taken on a clear day. Our
proposed model, on the other hand, allows the users to play with

all of the scene attributes with varying degrees of freedom at the
same time.
Alternatively, some efforts on image-to-image translation has

been made to increase the realism and resolution with multi-scale
approaches [Chen and Koltun 2017; Park et al. 2019; Qi et al. 2018;
Wang et al. 2018]. Wang et al. [2018]’s Pix2pixHD model improves
both the resolution and the photorealism of Pix2pix [Isola et al. 2017]
by employing multi-scale generator and discriminator networks.
Recently, Park et al. [2019] propose a spatially-adaptive normal-
ization scheme to better preserve semantic information. Qi et al.
[2018] utilize a semi-parametric approach and increase the photo-
realism of the output images by composing real object segments
from a set of training images within an image-to-image synthesis
network. Chen and Koltun [2017] try to achieve realism through a
carefully crafted regression objective that maps a single input layout
to multiple potential scene outputs. Nonetheless, despite modeling
one-to-many relationships, the number of outputs is pre-defined and
fixed, which still puts tight constraints on the generation process. As
compared to these works, besides taking semantic layout as input,
our proposed scene generation network is additionally aware of
the transient attributes and the latent random noises characterizing
intrinsic properties of the generated outputs. As a consequence, our
model is more flexible in generating the same scene content under
different conditions such as lighting, weather, and seasons.

From training point of view, a careful selection of “negative” pairs,
i.e. negative mining, is an essential component in metric learning
and ranking [Fu et al. 2013; Li et al. 2013; Shrivastava et al. 2016]. Ex-
isting works in CGAN have been using randomly sampled negative
image-condition pairs [Reed et al. 2016a]. However, such random
negative mining strategy has been shown to be inferior to more
meticulous negative sampling schemes [Bucher et al. 2016]. Particu-
larly, the negative pair sampling scheme proposed in our work is
inspired by the concept of relevant negative [Li et al. 2013], where
the negative examples that are visually similar to positive ones are
emphasized more during learning.
To make the generated images look more similar to the refer-

ence images, a common technique is to consider feature matching
which is commonly employed through a perceptual loss [Chen and
Koltun 2017; Dosovitskiy and Brox 2016; Johnson et al. 2016]. The
perceptual loss in our proposed model distinguishes itself from ex-
isting works by matching segmentation invariant features from
pre-trained segmentation networks [Zhou et al. 2017], leading to
diverse generations that comply with the given layouts.

2.2 Image Editing
There has been a great effort towards building methods for ma-
nipulating visual appearance of a given image. Example-based ap-
proaches [Pitie et al. 2005; Reinhard et al. 2001] use a reference
image to transfer color space statistics to input image so that visual
appearance of input image looks like the reference image. In contrast
to these global color transfer approaches, which require highly con-
sistent reference images with input image, user controllable color
transfer techniques were also proposed [An and Pellacini 2010; Dale
et al. 2009] to consider spatial layouts of input and reference im-
ages. Dale et al. [2009] search for some reference images which have
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similar visual context to input image in a large image dataset to
transfer local color from them and then use color transferred image
to restore input image. Other local color transfer approaches [Wu
et al. 2013] use the semantic segments to transfer color between
regions in reference and input images have same semantic label
(e.g. color is transferred from sky region in reference image to sky
region in input image). Some data-driven approaches [Laffont et al.
2014; Shih et al. 2013] leverage the time-lapse video datasets taken
for same scene to capture scene variations that occur at different
times. Shih et al. [2013] aim to give times of day appearances to a
given input image, for example converting an input image taken
midday to a nice sunset image. They first retrieve the most similar
video frame to input scene from dataset as reference frame. Then
they find matching patches between reference frame and input im-
age. Lastly, they transfer the variation that occurs between reference
frame and desired reference frame which is same scene but taken
different time of day to input image. Laffont et al. [2014] take a
step forward in their work for handling more general variations as
transient attributes such as lighting, weather, and seasons.
High-level image editing offers easier and more natural way to

casual users to manipulate a given image. Instead of using a refer-
ence image either provided by the user or retrieved from a database,
learning the image manipulations and high-level attributes for im-
age editing like a human has also attracted researchers. Berthouzoz
et al. [2011] learn parameters of the basic operations for some ma-
nipulations recorded in photoshop as macro to adapt them to new
images, for example, applying same skin color correction operation
with same parameters for both faces with dark-skinned and light-
skinned does not give expected correction. In contrast to learning
image operations for specific editing effects, Cheng et al. [2014]
learn the attributes as adjectives and objects as nouns for semantic
parsing of an image and further use them for verbal guided image
manipulation to indoor images. For example, the verbal command
“change the floor to wooden” modifies the appearance of the floor.
Similarly, Laffont et al. [2014] learn to recognize transient attributes
for attribute-guided image editing on outdoor images. To modify
the look of an input image (e.g. a photo taken in a sunny day), they
first locate similar scenes in a dataset they collected and annotated
with transient attributes. Then they transfer the desired look (e.g.
“more winter”) from the corresponding version of the candidate
match images by using an appearance transfer method. Lee et al.
[2016] aim to automatically select a subset of style exemplars that
will achieve good stylization results by learning a content-to-style
mapping between large photo collection and a small style dataset.

Deep learning has fueled a growing literature on employing neu-
ral approaches to improve existing image editing problems. Here,
we review the studies that are the most relevant to our work. Gatys
et al. [2016] have demonstrated how Convolutional Neural Net-
works (CNNs) effectively encode content and texture separately in
feature maps of CNNs trained on large-scale image datasets and
have proposed a neural style transfer method to transfer artistic
styles from paintings to natural images. Alternatively, Johnson et al.
[2016] train a transformation network to speed up the test time
of style transferring together with minimization of perceptual loss
between input image and stylized image. Li et al. [2017b] consider a

deep feed-forward network, which is capable of generating multi-
ple and diverse results within a single network. Recent deep photo
style transfer method of Luan et al. [2017], named DPST, aims at
providing realism in case of style transfer is made between the
real photos. For example, when one wants to make an input photo
look like taken in different illumination and weather conditions,
a photo-realistic transfer is necessary. It uses semantic labels to
prevent semantic inconsistency so that style transfer is carried out
between same semantic regions. Recently, Li et al. [2018] have pro-
posed another photo style transfer method called FPST, which works
significantly faster than DPST. It considers a two-steps process, a
stylization step followed by a photorealistic smoothing step, both
of each having efficient closed-form solutions. There are some style
transfer networks which are specialized for the editing face images
and portraits [Kemelmacher-Shlizerman 2016; Liao et al. 2017; Selim
et al. 2016] with new objectives. Nevertheless, these style transfer
works limit the users to find an reference photo in which desired
style effects exist for desired attributes.

Yan et al. [2016] introduce the first automatic photo adjustment
framework based on deep neural networks. They use deep neural
network to learn a regressor which transforms the colors for artistic
styles especially color adjustment from the image and its stylized
version pairs. They define a set of feature descriptors based on
pixel, global and semantic levels. In another work, Gharbi et al.
[2017] propose a new neural network architecture to learn image
enhancement transformations at low resolution, then they move
learned transformations to higher resolution in bilateral space in an
edge-preserving manner.

Lastly, building upon conditional GAN model, some image com-
pletion works have been proposed to predict missing regions provid-
ing global and local context information with multiple discriminator
networks [Iizuka et al. 2017; Li et al. 2017c].

3 ALS18K DATASET
To train our model, we curate a new dataset by selecting and annotat-
ing images from two popular scene datasets, namely ADE20K [Zhou
et al. 2017] and Transient Attributes [Laffont et al. 2014], for the
reasons which will become clear shortly.
ADE20K [Zhou et al. 2017] includes 22, 210 images from a di-

verse set of indoor and outdoor scenes which are densely annotated
with object and stuff instances from 150 classes. However, it does
not include any information about transient attributes. Transient
Attributes [Laffont et al. 2014] contains 8, 571 outdoor scene im-
ages captured by 101 webcams in which the images of the same
scene can exhibit high variance in appearance due to variations
in atmospheric conditions caused by weather, time of day, season.
The images in this dataset are annotated with 40 transient scene
attributes, e.g. sunrise/sunset, cloudy, foggy, autumn, winter, but
this time it lacks semantic layout labels.
To establish a richly annotated, large-scale dataset of outdoor

images with both transient attribute and layout labels, we further
operate on these two datasets as follows. First, from ADE20K, we
manually pick the 9,201 images corresponding to outdoor scenes,
which contain nature and urban scenery pictures. For these im-
ages, we need to obtain transient attribute annotations. To do so,

, Vol. 1, No. 1, Article . Publication date: October 2019.



Manipulating Attributes of Natural Scenes via Hallucination • :5

Fig. 2. Overview of the proposed attribute manipulation framework. Given an input image and its semantic layout, we first resize and center-crop the layout
to 512 × 512 pixels and feed it to our scene generation network. After obtaining the scene synthesized according to the target transient attributes, we transfer
the look of the hallucinated style back to the original input image.

we conduct initial attribute predictions using the pretrained model
from [Baltenberger et al. 2016] and then manually verify the pre-
dictions. From Transient Attributes, we select all the 8,571 images.
To get the layouts, we first run the semantic segmentation model
by Zhao et al. [2017], the winner of the MIT Scene Parsing Challenge
2016, and assuming that each webcam image of the same scene has
the same semantic layout, we manually select the best semantic
layout prediction for each scene and use those predictions as the
ground truth layout for the related images.

In total, we collect 17,772 outdoor images (9,201 from ADE20K +
8,571 from Transient Attributes), with 150 semantic categories and
40 transient attributes. Following the train-val split from ADE20K,
8,363 out of the 9,201 images are assigned to the training set, the
other 838 testing; for the Transient Attributes dataset, 500 randomly
selected images are held out for testing. In total, we have 16,434
training examples and 1,338 testing images. More samples of our
annotations are presented in the Supplementary Material. Lastly,
we resize the height of all images to 512 pixels and apply center-
cropping to obtain 512 × 512 images.

4 ATTRIBUTE MANIPULATION FRAMEWORK
Our framework provides an easy and high-level editing system
to manipulate transient attributes of outdoor scenes (see Fig. 2).
The key component of our framework is a scene generation net-
work that is conditioned on semantic layout and continuous-valued
vector of transient attributes. This network allows us to generate
synthetic scenes consistent with the semantic layout of the input
image and having the desired transient attributes. One can play
with 40 different transient attributes by increasing or decreasing
values of certain dimensions. Note that, at this stage, the semantic
layout of the input image should also be fed to the network, which
can be easily automated by a scene parsing model. Once an artificial
scene with desired properties is generated, we then transfer the look

of the hallucinated image to the original input image to achieve
attribute manipulation in a photorealistic manner.

In Section 4.1, we present the architectural details of our attribute
and layout conditioned scene generation network and the method-
ologies for effectively training our network. Finally, in Section 4.2,
we discuss the photo style transfer method that we utilize to transfer
the appearance of generated images to the input image.

4.1 Scene Generation
In this section, we first give a brief technical summary of GANs
and conditional GANs (CGANs), which provides the foundation for
our scene generation network (SGN). We then present architectural
details of our SGN model, followed by the two strategies applied for
improving the training process. All the implementation details are
included in the Supplementary Material.

4.1.1 Background. In Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014], a discriminator network D and a generator
network G play a two-player min-max game where D learns to
determine if an image is real or fake and G strives to output as
realistic images as possible to fool the discriminator. The G and D
are trained jointly by performing alternating updates:

min
G

max
D
LGAN (G,D) = Ex∼pdata (x )[logD(x)] + (1)

Ez∼pz (z)[log (1 − D(G(z)))]

where x is a natural image drawn from the true data distribution
pdata (x) and z is a random noise vector sampled from a multivariate
Gaussian distribution. The optimal solution to this min-max game
is when the distribution pG converges to pdata .
Conditional GANs [Mirza and Osindero 2014] (CGANs) engage

additional forms of side information as generation constraints, e.g.
class labels [Mirza and Osindero 2014], image captions [Reed et al.
2016b], bounding boxes and object keypoints [Reed et al. 2016a].
Given a context vector c as side information, the generatorG(z, c),
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Fig. 3. Our proposed Scene Generation Network (SGN) can generate synthetic outdoor scenes consistent with given layout and transient attributes.

taking both the random noise and the side information, tries to
synthesize a realistic image that satisfies the condition c . The dis-
criminator, now having real/fake images and context vectors as
inputs, aims at not only distinguishing real and fake images but
also whether an image satisfies the paired condition c . Such charac-
teristics are referred to as match-aware [Reed et al. 2016b]. In this
way, we expect the generated output of CGAN xд is controlled by
the side information c . Particularly, in our model, c is composed of
semantic layouts s and transient attributes a.

4.1.2 Proposed Architecture. In our work, we follow a multi-
scale strategy similar to that in Pix2pixHD [Wang et al. 2018]. Our
scene generator network (SGN), however, takes the transient scene
attributes and a noise vector as extra inputs in addition to the se-
mantic layout. While the noise vector provides stochasticity and
controls diversity in the generated images, transient attributes let
the users have control on the generation process. In more detail, our
multi-scale generator network G = {G1,G2} consists of a coarse-
scale (G1) generator and a fine-scale (G2) generator. As illustrated
in Fig. 3, G1 and G2 have nearly the same architecture, with the
exception that they work on different image resolutions. While G1
operates at a resolution of 256 × 256 pixels, G2 outputs an image
with a resolution that is 4× larger, i.e. 512 × 512 pixels. Here, the
image generated byG1 is fed to to G2 as an additional input in the
form of a tensor. In that regard, G2 can be interpreted as a network
that performs local enhancements in the fine resolution.
In our coarse and fine generator networks, while the semantic

layout categories are encoded into 8-bit binary codes, transient at-
tributes are represented by a 40-d vector. Input semantic layout map
S is of the same resolution with our fine scale image resolution. We
concatenate semantic layout S and noise z, and feed their concate-
nation into convolutional layers of G1 and G2 to obtain semantic
feature tensors, which are used as input to the subsequent resid-
ual blocks. For the coarse scale generator G1, we at first perform
a downsampling operation with a factor of 2 to align the resolu-
tions. Then, spatially replicated attribute vectors a are concatenated
to input tensors of each residual block in G1 and G2 to condition
the image generation process in regard to input transient scene

attributes. Finally, deconvolutional layers are used to upsample the
feature tensor of the last residual block to obtain final output images.
For fine scale generator G2, semantic feature tensor extracted with
the convolutional layers is summed with the feature tensor from
the last residual block of coarse generator G1 before feeding into
residual blocks of fine scale generator G2.
The discriminator used in our SGN also adopts a multi-scale ap-

proach in that it includes three different discriminators denoted by
D1,D2,D3 with similar network structures that operate at different
image scales. In particular, we create an image pyramid of 3 scales
that include real and generated high resolution images, their down-
sampled versions by a factor of 2 and 4. Our discriminators take
tuples of real or synthesized images from different levels of this
image pyramid, matching or mismatching semantic layouts and
transient attributes and decide whether the images are fake or real,
and whether the pairings are valid. That is, the discriminator aims
to satisfy

Dk (xk ,a, S) =

{
1, xk ∈ pdata and xk ,a, S correctly match,
0, otherwise.

with k = {1, 2, 3} denoting image scales. Hence, the training our
conditional GAN models becomes a multi-task learning problem
defined as follows:

min
G

max
D1,D2,D3

∑
k={1,2,3}

LGAN (G,Dk ) (2)

The architectural details of our Scene Generation Network are
given in Table 1. In this table, we follow a naming convention similar
to the one used in [Wang et al. 2018; Zhu et al. 2017a]. For instance,
C3128S2 denotes a Convolution-InstanceNorm-ReLU layer with 128
filters of kernel size 3 × 3 kernel and stride 2. f1i and f2i represent
ith internal feature tensors ofG1 andG2, respectively. R512 denotes
a residual block with filter size 512 as depicted in Fig. 3. Similarly,
D3128S0.5 represents a Deconvolution-InstanceNorm-ReLU layer
with 128 filters of kernel size 3 × 3 and stride 0.5. At the last de-
convolution layer D73S1, we do not use InstanceNorm and replace
ReLU activations with tanh. The discriminator resembles a Siamese
network [Bromley et al. 1994; Chopra et al. 2005], where one stream
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Table 1. Architectural details of the generator and discriminator networks.

Generator
Net. Input Specification

z∥S C764S1 − C3128S2 − C3256S2 − C3512S2 → f11

G1 f11∥a R512 − R512 − R512 − R512 − R512→ f12

f12 D3256S0.5 − D3128S0.5 − D364S0.5 → f13

f13 D73S1 → x256f ake

G2

z∥S C732S1 − C364S2 → f21

f13 + f21 R64 − R64→ f22

f22 D364S0.5 − D73S1 → x512f ake

Discriminator
Net. Input Specification

x C464S2 − C4128S2 − C4256S2 − C4512S2 → fx

Dk a∥S C464S2 − C4128S2 − C4256S2 − C4512S2 → fc

fx ∥fc C1512S1 − C41S1 → [0, 1]

takes the real/generated image as input x and the second one pro-
cesses the given attributes a and the spatial layout labels S . The
responses of these networks are then concatenated a∥S and fused
via a 1 × 1 convolution operation. The combined features are finally
sent to fully-connected layers for the binary decision. We use leaky
ReLU with slope 0.2 for our discriminator networks. We do not use
InstanceNorm at the input layers. We employ 3 discriminators at 3
different spatial scales with 1, 0.5 and 0.25 as the scaling factors for
both coarse and fine scale generators G1 and G2 during training.

4.1.3 Improved Training of SGNs. Here we elaborate on two
complementary training techniques that substantially boost the
efficiency of the training process.

Relevant Negative Mining. Training the match-aware discrimi-
nator in CGAN resembles learning to rank [Rudin and Schapire
2009], in the sense that a “real pair”–real image paired with right
conditions–should score higher (i.e. classifying into category 1 in
this case) than a “fake pair”–either image is fake or context infor-
mation is mismatched (i.e. classifying into category 0). For ranking
loss, it has been long acknowledged that naively sampling random
negative examples is inferior to more carefully designed negative
sampling scheme, such as various versions of hard negative min-
ing [Bucher et al. 2016; Fu et al. 2013; Li et al. 2013; Shrivastava
et al. 2016]. Analogously, a better negative mining scheme can be
employed by training CGAN, as existing works have been using
random sampling [Reed et al. 2016a]. To this end, we propose to
apply the concept of relevant negative mining [Li et al. 2013] (RNM)
to sample mismatching layout in training our SGN model. Con-
cretely, for each layout S , we search for its nearest neighbor S ′ and
set it as the corresponding mismatching negative example for S . In
Section 5, we present empirical qualitative and quantitative results
to demonstrate improvement from RNM over random sampling.
We attempted similar augmentation on attributes a by flipping a
few of them instead of complete random sampling to obtain the
mismatching a′ but found such operation hurt the performance,

likely due to the flipped attributes being too semantically close to
the original ones which cause ambiguity to the discriminator.

Layout-Invariant Perceptual Loss. Following the practice of exist-
ing works [Chen and Koltun 2017; Dosovitskiy and Brox 2016], we
also seek to stabilize adversarial training and enhance generation
quality by adding a perceptual loss. Conventionally, features used
for perceptual loss come from a deep CNN, such as VGG [Simonyan
and Zisserman 2014], pretrained on ImageNet for classification task.
However, perceptual loss to match such features would intuitively
withhold generation diversity, which opposes our intention of cre-
ating stochastic output via a GAN framework. Instead, we propose
to employ intermediate features trained on outdoor scene parsing
with ADE20K. The reason for doing so is three-fold: diversity in
generation is not suppressed, because scenes with different contents
but the same layout ideally produce the same high-level features;
the layout of the generation is further enforced thanks to the nature
of the scene parsing network; since the scene parsing network is
trained on real images, the perceptual loss will impose additional
regularization to make the output more photorealistic. The final
version of our proposed perceptual loss is as follows:

Lpercep (G) = Ez∼pz (z);x ,S ,a∼pdata (S ,a)
[
∥ fP (x) − fP (G(z,a, S))∥

2
2
]
,

(3)
where fP is the CNN encoder for the scene parser network. Our full
objective that combines multi-scale GAN loss and layout-invariant
feature matching loss thus becomes:

min
G

©«©« max
D={D1,D2,D3 }

∑
k=1,2,3

LGAN (G,Dk )
ª®¬ + λLpercep (G)ª®¬ (4)

where λ is a scalar controlling the importance of our proposed layout-
invariant feature matching loss and is set to 10 in our experiments.
By additionally considering RNM and perceptual loss, we arrive at
the training procedure which is outlined in Algorithm 1.

Algorithm 1: SGN training algorithm

1: Input: Training set Ω = {(x,a, S)} with training images x ,
semantic segmentation layouts S and transient attributes a.

2: for all number of iterations do
3: sample minibatch of paired x,a, S
4: sample minibatch of zi from N(0, I )Z
5: for all (xi ,ai , Si ) in Ω do
6: Randomly sample negative a′i mismatching xi
7: Sample S ′i mismatching xi via RNM
8: end for
9: xд ← G(zi ,ai , Si ) {Forward through generator}
10: for k=1:3 do
11: LDk ← −(logDk (x,a, S) + log (1 − Dk (xд,a, S)) +

log (1 − Dk (x,a
′, S ′))

12: Dk ← Dk − α∂LDk /∂Dk {Update discriminator Dk }
13: end for
14: LG ← − logD(xд,a, S) + λ∥ fp (x) − fp (xд)∥

2
2

15: G ← G − α∂LG/∂G {Update generator G}
16: end for

, Vol. 1, No. 1, Article . Publication date: October 2019.



:8 • Karacan, L. , Akata Z., Erdem A., Erdem E.

4.2 Style Transfer
The main goal in photo style transfer is to successfully transfer
visual style (such as color and texture) of a reference image onto
another image while preserving semantic structure of the target
image. In the past, statistical color transfer methods [Pitie et al. 2005;
Reinhard et al. 2001] showed that the success of the style transfer
methods highly depend on the semantic similarity of the source and
target images. To overcome this obstacle, user interaction, semantic
segmentation approaches or image matching methods were utilized
to provide semantic relation between source and target images. In
addition, researchers explored data driven methods to come up with
fully automatic approaches which retrieve the source style image
through some additional information such as attributes, features
and semantic similarity.

For existing deep learning based photo style transfer methods, it
is still crucial that source and reference images have similar seman-
tic layouts to provide successful and realistic style transfer results.
Image retrieval based approaches are limited with the dataset and
they become infeasible when there is no images with the desired
properties. The key distinguishing characteristics of our framework
is that we can generate a style image on the fly that has both simi-
lar semantic layout with the input image and possess the desired
transient attributes, thanks to our proposed SGN model. In our
framework, for photo style transfer, we consider employing both
DPST [Luan et al. 2017] and FPST [Li et al. 2018] models.
DPST [Luan et al. 2017] extends the formalization of the neural

style transfer method of Gatys et al. [2016] by adding a photoreal-
ism regularization term that enables the style transfer to be done
between same semantic regions instead of the whole image. This
property makes DPST very appropriate for our image manipula-
tion system. Although this method in general produces fairly good
results, we observe that it sometimes introduces some smoothing
and visual artifacts in the output images, which hurt the photore-
alism. For that reason, we first apply a cross bilateral filter [Chen
et al. 2007] to smooth the DPST’s output according to edges in the
input image and then apply the post-processing method proposed
by Mechrez et al. [2017], which uses screened Poisson equation to
make the stylized image more similar to the input image in order to
increase its visual quality.

FPST [Li et al. 2018] formulates photo style transfer as a two steps
procedure. The first step carries out photorealistic image stylization
by using a novel network architecture motivated by the whitening
and coloring transform [Li et al. 2017a], in which the upsampling
layers are replaced with unpooling layers. The second step performs
a manifold ranking based smoothing operation to eliminate the
structural artifacts introduced by the first step. As both of these steps
have closed-form solutions, FPST works much faster than DPST.
Since FPST involves an inherent smoothing step, in our experiments,
we only apply the approach by Mechrez et al. [2017] as a post-
processing step.

5 RESULTS AND COMPARISON
We first evaluate our scene generation network’s ability to syn-
thesize diverse and realistic-looking outdoor scenes, then show

attribute manipulation results of our proposed two-stage frame-
work that employs the hallucinated scenes as reference style images.
Lastly, we discuss the limitations of the approach.

5.1 Attribute and Layout Guided Scene Generation
Here, we assess the effectiveness of our SGN model on generating
outdoor scenes in terms of image quality, condition correctness and
diversity. We also demonstrate how the proposed model enables the
users to add and subtract scene elements.

5.1.1 Training Details. All models were trained with a mini-
batch size of 40 where parameters were initialized from a zero-
centered Gaussian distribution with standard deviation of 0.02. We
set the amount of the layout-invariant feature matching loss λ to
10. We used the Adam optimizer [Kingma and Ba 2014] with the
learning rate value of 2 × 10−4 and the momentum value of 0.5.
For data augmentation, we employed horizontal flipping with a
probability of 0.5. We trained our coarse-scale networks for 100
epochs on a NVIDIA Tesla K80 GPU for 3 days. After training
them, we kept their parameters fixed and trained our fine-scale
networks for 10 epochs. Then, in the next 70 epochs, we updated the
parameters of both of our fine and coarse-scale networks together.
Our implementation is based on the PyTorch framework. Training
of our fine-scale networks took about 10 days on a single GPU.

5.1.2 Ablation Study. We illustrate the role of Relevant Negative
Mining (RNM) and layout-invariant Perceptual Loss (PL) in improv-
ing generation quality with an ablation study. Here we consider the
outputs of the coarse-scale generator G1 to evaluate these improve-
ments as it acts like a global image generator. Our input layouts
come from the test set, i.e. are unseen during training. Furthermore,
we fix the transient attributes to the predictions of the pre-trained
deep transient model [Baltenberger et al. 2016]. Fig. 4 presents syn-
thetic outdoor images generated from layouts depicting different
scene categories such as urban, mountain, forest, coast, lake and
highway. We make the following observations from these results.

Attributes of the generated images are mostly in agreement with
the original transient attributes. Integrating RNM slightly improves
the rendering of attributes but in fact, its main role is to make
training more stable. Our proposed layout-invariant PL boosts the
final image quality of SGN. The roads, the trees and the clouds are
drawn with the right texture; the color distributions of the sky, the
water and the field also appear realistic; reasonable physical effects
are also observed such as the reflection of the water, fading of the
horizon, valid view perspective of urban objects. In our analysis, we
also experimented with the VGG-based perceptual loss, commonly
employed in many generative models, but as can be seen from Fig. 4,
our proposed perceptual loss, which performs feature matching over
a pretrained segmentation network, gives much better results in
terms of photorealism. Overall, the results with both RNM and PL
are visually more pleasing and faithful to the attributes and layouts.

For quantitative evaluation, we employ the Inception Score (IS) [Sal-
imans et al. 2016] and the Fréchet Inception Distance (FID) [Heusel
et al. 2017]2

2In our evaluation, we utilized the official implementations of IS and FID. IS scores are
estimated by considering all of the test images from our dataset, which were not seen
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Fig. 4. Sample scene generation results. In these examples, the input layouts are from the test set, which are unseen during training and the transient attributes
are fixed to the original transient attributes. Incorporating Relevant Negative Mining (RNM) and Perceptual Loss (PL) significantly improves the performance
of the baseline SGN model in terms of both image quality as well as faithfulness of the end result to conditioned layouts and attributes. Moreover, the way we
define our perceptual loss, as compared to commonly used VGG-based one, provides better and more photorealistic results.

The IS correlates well with human judgment of image quality
where higher IS indicates better quality. FID has been demonstrated
to be more reliable than IS in terms of assessing the realism and
variation of the generated samples. Lower FID value means that the
distributions of generated images and real images are similar to each
other. Table 2 shows the IS and FID values for our SGNmodel trained
under various settings, together with values for the real image
space. These results agree with our qualitative analysis that training
with RNM and Perceptual Loss provides samples of the highest
quality. Additionally, for each generated image, we also predict its
attributes and semantic segmentation map using separately trained
attribute predictor by Baltenberger et al. [2016] and the semantic
segmentation model by Zhou et al. [2017] and we report the average
MSE3 and segmentation accuracy again in Table 2. Training with the
proposed perceptual loss is more effective in reflecting photorealism
and preserving both the desired attributes and the semantic layout
better than the VGG-based perceptual loss.

Our SGN model with RNM and Perceptual Loss shows clear supe-
riority to other variants both qualitatively and quantitatively. Thus
from now on, if not mentioned otherwise, all of our results are
obtained with this model.

5.1.3 Comparison with Image-to-Image Translation Models. We
compare ourmodel to Pix2pix [Isola et al. 2017] and Pix2pixHD [Wang
et al. 2018] models4. It is worth mentioning that both of these two
approaches generate images only by conditioning on the semantic
layout but not transient attributes, and moreover, they do not uti-
lize noise vectors. We provide qualitative comparisons in Fig. 5. As
these results demonstrate, our model not only generates realistic
looking images on par with Pix2pixHD but also has the capability to
deliver control over the attributes of the generated scenes. “Sunset”
attribute makes the horizon slightly more reddish, “Dry” attribute

during training and by using a split size of 10. While calculating FID scores, we employ
all of the test images from our dataset as the reference images.
3The ground truth attributes are scalar values between 0 and 1.
4For both of these models, we use the original source codes provided by the authors.

Table 2. Ablation study. We compare visual quality with respect to Inception
Score (IS) and Fréchet Inception distance (FID), attribute and semantic layout
correctness in terms of average MSE of attribute predictions (Att. MSE) and
segmentation accuracy (Seg. Acc.), respectively, via pre-trained models. Our
SGN model trained with RNM and PL techniques consistently outperforms
the others, including the setting with VGG-based perceptual loss.

Model IS FID Att. MSE Seg. Acc.
SGN 3.91 43.77 0.016 67.70
+RNM 3.89 41.84 0.016 70.11
+VGG 3.80 41.87 0.016 67.42
+PL 4.15 36.42 0.015 70.44
+RNM+PL 4.19 35.02 0.015 71.80

Original 5.77 0.00 0.010 75.64

increases the brown tones on the trees, “Snow” attribute whitens
the ground. Also note that the emergence of each attribute tends to
highly resonate with part of the image that is most related to the
attribute. That is, “Clouds” attribute primarily influences the sky,
whereas “Winter” attribute correlates with the ground, and “Lush”
tends to impact the trees and the grass. This further highlights
our model’s reasoning capability about the attributes in producing
realistic synthetic scenes.
For quantitative comparison, we compare the IS and FID scores

and segmentation accuracy using all 1, 338 testing images in Table 3
considering both coarse and fine scales. These results suggest that
our proposed model produces high fidelity natural images better
than Pix2pixHD in both scales. The difference in the segmentation
accuracy suggests that Pix2pixHD puts a more strict restraint on the
layout whereas our model offers flexibility in achieving a reasonable
trade-off between capturing realism in accordance with transient
attributes vs. fully agreeingwith the layout. Furthermore, in addition
to these metrics, we conduct a human evaluation on Figure Eight5,

5Figure Eight is a web-based data annotation company which can be accessed from
https://www.figure-eight.com/
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Fig. 5. Comparison of our SGN model against Pix2pix [Isola et al. 2017] and Pix2pixHD [Wang et al. 2018]. Each row shows the original image and the samples
generated according to its corresponding semantic layout. Since our SGN model also takes into account a set of target transient attributes (only the top three
most significant ones are shown here for the sake of simplicity), it can generate diverse and more realistic results than the other methods.

Table 3. Quantitative comparison of layout conditioned image synthesis
approaches. Our model consistently outperforms others in both coarse and
fine resolutions in terms of photorealism, as measured by IS and FID.

Model IS FID Seg. Acc.

Co
ar
se

Pix2pix 3.26 76.40 61.93
Pix2pixHD 4.20 47.86 75.57
Ours 4.19 35.02 71.80
Original 5.77 0.00 75.64

Fi
ne

Pix2pixHD 4.87 50.85 76.17
Ours 5.05 36.34 74.60
Original 7.37 0.00 77.14

asking workers to select among the results of our proposed model
and the Pix2pixHD method (for the same semantic layout) which
they believe is more realistic. We randomly generate 200 questions,
and let 5 different subjects answer each question. We provide the
details of our user study in the Supplementary Material. We find
that 66% of the subjects picked our results as more realistic. These
results suggest that besides the advantages of manipulation over
transient attributes, our model also produces higher quality images
than the Pix2pixHD model. We also compared our results to the
recently proposed Cascaded Refinement Network [Chen and Koltun
2017], however, it did not give meaningful results on our dataset
with complex scenes6.

5.1.4 Diversity of the Generated Images. In our framework, a
user can control the diversity via three different mechanisms, each

6We trained this model using the official code provided by the authors.

playing a different role in the generation process. Perhaps the most
important one is the input semantic layout which explicitly specifies
the content of the synthesized image, and the other two are the
target transient attributes and the noise vector. In Fig. 6, we show
the effect of varying the transient attributes for a sample semantic
layout and Fig. 7 illustrates the role of noise. If we keep the layout
and the attributes fixed, the random noise vector mainly affects
the appearance of some local regions, especially the ones involving
irregular or stochastic textures such as the sky, the trees or the plain
grass. The transient attribute vectors, however, have a more global
effect, modifying the image without making any changes to the
constituent parts of the scene.

5.1.5 Adding and Subtracting Scene Elements. Here we envision
a potential application of our model as a scene editing tool that
can add or subtract scene elements. Fig. 8 demonstrates an example.
We begin with a coarse spatial layout which contains two large
segments denoting the “sky” and the “ground”. We then gradually
add new elements, namely “mountain”, “tree”, “water”. At each step,
our model inserts a new object based on the semantic layout. In fact,
such a generation process closely resembles human thought process
in imagining and painting novel scenes. The reverse process, sub-
tracting elements piece by piece, can be achieved in a similar manner.
We sample different random attribute vectors to illustrate how gen-
eration diversity can enrich the outcomes of such photo-editing
tools and provide a video demo in the Supplementary Material.

5.2 Attribute Transfer
We demonstrate our attribute manipulation results in Fig. 9. Here
we only provide results obtained by using FPST [Li et al. 2018] as it
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Fig. 6. Modifying transient attributes in generating outdoor images under different weather and time conditions. Our model’s ability of varying with transient
attributes contributes to the diversity and photorealism in its generation (more results can be found in the Supplementary Material).

A synthetic scene Stochastic variations Standard deviation

Fig. 7. Effect of the noise vector. For an example synthetically generated
scene (left), we show close-up views from three different regions (middle)
from samples obtained with only changing the random noise. Standard
deviation of each pixel over 100 different realizations of the scene (right),
which demonstrates that the random noise causes stochastic variations
within the irregular or stochastic textural regions.

gives slightly better results in our experiments and also significantly
faster than DPST [Luan et al. 2017]. From now on, unless otherwise
stated, all of our attribute transfer results will be the ones obtained
with FPST. We provide the results of DPST in the Supplementary
Material. As can be seen, our algorithm produces photorealistic ma-
nipulation results for many different types of attributes like “Sunset”,
“Spring”, “Fog”, “Snow”, and moreover, a distinctive property of our
approach is that it can perform multimodal editing for a combina-
tion of transient attributes as well, such as “Winter and Clouds” and
“Summer and Moist”. It should be noted that modifying an attribute
is inherently coupled with the appearance of certain semantic scene
elements. For example, increasing “Winter” attribute makes the
color of the grass white whereas increasing “Autumn” attribute
turns them to brown. As another example, “Clouds” attribute does
not modify the global appearance of the scene but merely the sky

region, comparing with “Fog” attribute which blurs distant objects;
“Dry” attribute emphasizes the hot colors, while “Warm” attribute
has the opposite effect. Some attributes such as “Fog”, however, have
an influence on the global appearance.

In Fig. 10, we compare the performance of our method to the data-
driven approach of Laffont et al. [2014]. As mentioned in Section 2,
this approach first identifies a scene that is semantically similar to
the input image using a database of images with attribute annota-
tions, then it retrieves the version of that scene having the desired
properties, and finally, the retrieved image is used as a reference for
style transfer. For retrieving the images semantically similar to the
source image we also use the Transient Attributes dataset and the
retrieval strategy employed by Laffont et al. [2014]. In fact, since the
authors did not publicly share their attribute transfer code, in our
experiments, we consider the test cases provided in their project
website 7. In the figure, we both present the reference images gener-
ated by our approach and retrieved by the competing method at the
right-bottom corner of each output image. For a fair comparison,
we also present alternative results of [Laffont et al. 2014] where we
replace the original exemplar-based transfer method with FPST [Li
et al. 2018], which is used in obtaining our results8. As can be seen,
our approach produces better results than [Laffont et al. 2014] in
terms of visual quality and as to reflecting the desired transient
attributes. These results also demonstrate how style transfer meth-
ods are dependent on semantic similarity between the input and
style images. Our main advantage over the approach by Laffont
et al. [2014] is that the target image is directly hallucinated from
the source image via the proposed SGN model, instead of retrieving

7The test cases we used in our experimental analysis are available at http://transattr.cs.
brown.edu/comparisonAppearanceTransfer/testCases.html.
8Note that, the post-processing method Mechrez et al. [2017] is also employed here to
improve photorealism.
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Fig. 8. Gradually adding and removing elements to and from the generated images. We use a coarse spatial layout map (top left) to generate an image from
scratch, and then keep adding new scene elements to the map to refine the synthesized images. Moreover, we also show how we can modify the look by
conditioning on different transient attributes.

Fig. 9. Sample attribute manipulation results. Given an outdoor scene and its semantic layout, our model produces realistic looking results for modifying
various different transient attributes. Moreover, it can perform multimodal editing as well, in which we modify a combination of attributes.

the target image from a training set. This makes a difference since
the source and the target images always share the same semantic
layout. In this regard, our approach provides a more natural way to
edit an input image to modify its look under different conditions.

Additionally, we conducted a user study on Figure Eight to val-
idate our observations. We show the participants an input image
and a pair of manipulation results along with a target attribute and
force them to select one of the manipulated images which they
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Input Laffont et al. [2014] Laffont et al. [2014] w/ FPST Ours

Fig. 10. Comparison with [Laffont et al. 2014]. In each row, for a given input image (first column), we respectively provide the results of [Laffont et al. 2014]
using their exemplar-based style transfer method (second column) and FPST [Li et al. 2018] (third column) between retrieved images and input images, and
the results of our method (last column) using FPST [Li et al. 2018] between generated image by proposed SGN model and input image.

Table 4. User study results for attribute manipulation. The preference rate
denotes the percentage of comparisons in which users favor one method
over the other.

Preference rate
Ours w/ FPST > Laffont et al. [2014] 65%
Ours w/ FPST > Laffont et al. [2014] w/ FPST 83%
Ours w/ FPST > Ours w/ DPST 52%

consider visually more appealing regarding the specified target at-
tribute. The manipulation results are either our results obtained by
using DPST or FPST, or those of [Laffont et al. 2014]. We have a
total of 60 questions and we collected at least 3 user responses per
each of these question. We provide the details of our user study in
the Supplementary Material. Table 4 summarizes these evaluation
results. We find that the human subjects prefer our approach against
the data-driven approach by [Laffont et al. 2014] 65% of the time.
This margin substantially increases when we replace the original
exemplar-based transfer part of [Laffont et al. 2014] with FPST as

the semantic layouts of retrieved images are most of the time not
consistent with those of the input images. We also evaluate the
results of our frameworks with FPST and DPST being used as the
style transfer network. As can be seen from Table 4, the human
subjects prefer FPST against DPST but by a very small margin.
The most important advantage of our framework over existing

works is that our approach enables users to play with the degree of
desired attributes via changing the numerical values of the attribute
condition vector. As shown in Fig. 11, we can increase and decrease
the strength of specific attributes and smoothly walk along the
learned attribute manifold using the outputs from the proposed
SGN model. This is nearly impossible for a retrieval-based editing
system since the style images are limited with the richness of the
database.
Although our attribute manipulation approach is designed for

natural images, we can apply it to oil paintings as well. In Fig. 12,
we manipulate transient attributes of three oil paintings to obtain
their novel versions depicting these landscapes at different seasons.
As can be seen from these results, our model also gives visually
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Fig. 11. Our method can produce photorealistic manipulation results for different degrees of transient attributes.

Fig. 12. Season transfer to paintings. Source images: Wheat Field with
Cypresse by Vincent van Gogh (1889), In the Auvergne by Jean-Francois
Millet (1869) and Lourmarin by Paul-Camille Guigou (1868), respectively.

pleasing results for these paintings, hallucinating how they might
look like if the painters picture the same scene at different times.

5.2.1 Effect of Post-Processing and Running Times. We show the
effects of the post-processing steps involved in our framework in
Fig. 13. As mentioned in Section 4.2, for DPST based stylized images,
we first apply a cross bilateral filter (BLF) [Chen et al. 2007] and then
employ screened Poisson equation (SPE) based photorealism en-
hancement approach [Mechrez et al. 2017]. For FPST based stylized
images, we only apply SPE as it inherently performs smoothing. As
can be seen from these results, the original stylized images demon-
strate some texture artifacts and look more like a painting. Our
post-processing steps make these stylized images photorealistic and
more similar to the given input image.
In Table 5, we provide the total running time of our framework

for manipulating the attributes of an outdoor image. There are three
main parts, namely the scene generator network (SGN), the style
transfer network, and the post-processing. We report the running
time of each of these steps as well. For the style transfer and the post-
processing steps, we employ two different versions, one depends on
DPST and the other one depends on FPST, and the corresponding
smoothing operations. The experiment is conducted on a system
with an NVIDIA Tesla K80 graphics card.We consider three different
sizes for the input image and report the average run-time for each
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Input DPST FPST

DPST+BLF DPST+BLF+SPE FPST+SPE

Fig. 13. Effect of post-processing. Top: a sample input image and “Autumn”
attribute transfer results by our framework with DPST [Luan et al. 2017]
and FPST [Li et al. 2018], respectively. Bottom: the impact of various post-
processing strategies on the final results. See Section 4.2 for the details.

Table 5. Running time analysis showing the average run time (in seconds)
of each component of the proposed model across various image resolutions.

Resolution SGN Style Tranfer Post-Processing Total

D
PS

T 512 × 256 0.10 1245.31 2.52 1247.93

768 × 384 0.10 2619.48 4.61 2626.19

1024 × 512 0.10 4130.27 7.24 4137.51

FP
ST

512 × 256 0.10 36.54 1.54 38.18

768 × 384 0.10 99.34 3.63 103.07

1024 × 512 0.10 222.20 6.22 228.52

image resolution. Our FPST-based solution is, in general, much faster
than our DPST-based one as most of the computation time is spent
on the style transfer step. For images of 1024 × 512 pixels, while it
takes 4 minutes to manipulate the attributes of an image with FPST,
DPST requires 70 minutes to achieve the task.

5.3 Effect of Center-cropping
Our SGN works with a fixed resolution of 512 × 512 pixels and
accepts the semantic layout of the center cropped and resized ver-
sion of the input image. The style transfer networks consider SGN’s
output as the target style image and manipulates the input im-
age accordingly. When the image is very wide, like a panorama,
center-cropping omits most of the source image. We analyze how
this affects the overall performance our framework on a couple
of panoramic images from SUN360 dataset [Xiao et al. 2012]. We
present attribute manipulation results for one of these images in
Fig. 14 and present the rest in the Supplementary Material. We have
observed that center-cropping does not pose a serious drawback
to our approach, since the style transfer step exploits semantic lay-
outs to constrain color transformations to be carried out between
features from the image regions with the same label.

Fig. 14. Effect of center-cropping on manipulating a panoramic image.

Fig. 15. Example failure cases for our attribute manipulation framework,
which are due to the visual quality of synthesized reference style image (top
row) and failing of the photo style transfer method (bottom two rows).

5.4 Limitations
Our framework generally gives quite plausible results, but we should
note that it might fail in some circumstances if either one of its com-
ponents fails to function properly. In Fig. 15, we demonstrate such
example failure cases. In the first row, the photo-realistic quality
of the generated scene is not very high as it does note reproduce
the houses well. As a consequence, the manipulation result is not
very convincing. For the last two scenes, our SGN model halluci-
nated “Fog” and “Night” attributes successfully but the style transfer
network fails to transfer the looks to the input images.
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6 CONCLUSION
We have presented a high-level image manipulation framework to
edit transient attributes of natural outdoor scenes. The main novelty
of the paper is to utilize a scene generation network in order to
synthesize on the fly the reference style image that is consistent
with the semantic layout of the input image and exhibit the desired
attributes. Trained on our richly annotated ALS18K dataset, the pro-
posed generative network can hallucinate many different attributes
reasonably well and even allows edits with multiple attributes in
a unified manner. For future work, we plan to extend our model’s
functionality to perform local edits based on natural text queries, e.g.
add or remove certain scene elements using referring expressions.
Another interesting and more challenging research direction is to
replace the proposed two-staged model with an architecture that
can perform the manipulation in a single shot.
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